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The influence exerted by the physical interaction of particles, their Brownian 
motion, and the fluctuations in porosity on the effective viscosity of suspen- 
sions and colloids is evaluated. 

A fundamental problem, not yet rigorously solved, pertaining to the physical mechanics 
of mixtures, involves the problem of determining the effective characteristics of a d:sperse 
medium on the basis of the known features of its structure at the level of individual parti- 
cles. Analysis of the theological properties of suspensions in most of the works with which 
we are familiar is limited to an investigation of two extreme cases. First of all, the 
investigation involves a system of neutral particles where interaction arises between these 
particles only as a consequence of perturbations which they themselves have introduced into 
the flow of the carrier fluid. Secondly, the investigations deal with strongly structured 
colloids, and their flow is described by means of various modifications of the Frenkek-Eyring 
theory [i, 2]. Here the location of the particles and their concentration in each region 
of space is assumed to be determined by the characteristics of the medium. 

Real suspensions and colloids are more complex systems than is assumed within th~ frame- 
work of such idealizations. Thus, the molecular and hydrodynamic interaction between parti- 
cles may be comparable. It is not evident in advance that they combine to achieve a total 
hydrodynamic stress, as was asslmned in [i]. There have been virtually no studies into the 
influence exerted by the Brownian motion in finely dispersed suspensions on the rheologi- 
cal properties of these suspensions [3, 4]. Within the scope of a single physicomath~matical 
model it is impossible to take into consideration the great multiplicity of mechanisms affec- 
ting the rheology of disperse systems. In the following we will individually examine the 
influence of the combined molecular and hydrodynamic interactions of particles, as we:l 
as certain of the consequences resulting from their Brownian motion on the effective ~risco- 
sity of suspensions and colloids. The particles are represented by identical sol[d spheres, 
and the dispersion fluid is assumed to be Newtonian and incompressible. 

physical Particle Interaction. We are quite familiar with the fact that the ene~:gy 
of interaction between the colloidal particles, as a function of the distance between the 
particles, is a nov~onotonic function. Therefore, in the motion of a particle along a layer 
of other particles, said particle will have to overcome a "potential crest" (see Fig. i). 
A portion of the flow energy, which is dissipated into heat, is spent on overcoming these 
potential barriers, thus leading to an increase in the effective viscosity of the suspension, 
relative to the situation in which there is no potential interaction between the part=cles. 

In continuous approximation the flow of an incompressible suspension can be described 
by means of the following equations: 

- - V P + V  ~,  d i v v  = O, o = 2~e ,  ~ =  oh+~, ~ = ~h+~1. 

Here oh and of represent the deviator components of the mean stress o--pl, ascribed 
to the hydrodynamic effects and molecular interparticle interaction, respectively. The 
strain rate tensor e is associated in the usual fashion with the average velocity of the 
flow [5]. 

(i) 

The effective viscosity N of the suspension represents the sum of the "hydrodynarlic" 
viscosity nh, i.e., a factor of proportionality between Oh and e, as well as of the "nolecu- 
lar" viscosity linking ~ to e. The "hydrodynamic" viscosity qh can be calculated from the 
following relationship which flows directly out of its definition [6, 7]: 
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Fig. I. Schematic representation of the 
"crests" of potential barriers, formed by 
an isolated layer of particles. 
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where ~* represents the total stress within some arbitrary test particle, and which arises 
in the shear flow of the suspension, with an average strain rate tensor e. 

It is convenient to transform the volume integral (2) into a surface integral, for 
which purpose we will write 

. [ Z ' d r =  . [ ( v : r ~ * - - r : v  ~*)dr, 
r~<a r ~ a  

where : represents dyed multiplication. Having subsequently applied the Ostrogradskii-Guass 
theorem, bearing in mind that in steady-state processes V~* = 0, and also taking into con- 
sideration the continuity of the force density at the surface of the particle, we obtain 

Z~dr = _1_1 .[ rirk (eD - -  p+Sik) dr, i, ], k = x, y, z, ( 3 )  
r~<a a r=a 

where 6ik is the Kronecker delta. 

The parameter qf, generated by the scattering of the flow energy as the particles skip 
through the potential barriers, is evaluated in the Eyring-Frenkel theory (see, for example 
[I]). Thus, as we can see from (I)-(3), to determined the effective viscosity q of the 
suspension it is necessary to find the stress o+--p+| "near the surface of the test particle. 
It is impossible to achieve an exact solution for this problem because of the need to take 
into consideration the presence of numerous particles in the vicinity of the test sphere. 
Later on we will make use of an approximation of a self-consistent field within whose scope 
it is assumed that the isolated particle is submerged into a uniform medium whose properties 
coincide with the effective properties of the suspension, while the structure of the flow 
at an infinite distance from the test sphere is specified on the basis of the average values 
of v and e. It has been demonstrated in [8] that such an approximation gives good results 
when p ~ 0.20-0.25. It is additionally assumed that the relationship between qf and e can 
be neglected in the vicinity of the test sphere. 

Within the framework of the approximations adopted here, the problem of a test particle 
is formulated in precisely the same way as in [8]: 

- - V p + q - ~ A v +  = 0; divv + = O, r > a ;  v + n - 0 ,  r = a; a + n - - l p +  = ~*n, 
(4) 

r = a ;  v + - + v - - v ~ + e r ,  r - + ~ ;  ~+ =2~e+; ~ = ~h+~s,  

where vl is the velocity of motion for the test sphere. In the absence of mass forces we 
have v=vl. The plus sign here denotes the corresponding quantities near the test particle, 
and the tensor e+ is associated with v + just as e is associated with v. After calculations 
analogous to those performed in [8], we will determine the values of o + and p+, dependent 
on q as well as on the parameter, and then we will find from (3) that 

~ =  ~ o + 2 , 5 p ~  , n = ~o___+j• (5 )  
1 - -2 .5p  1 - -2 .5p  

We can see from (5) that when Do < qf the total viscosity of the colloid is not equal 
to the magnitude of qf determined from the analogy between the colloid and the molecular 
fluid. This can be explained by the fact that in the shear flow of the suspension mechani- 
cal stresses ~*iare generated within the particles, and these contribute to the average 
stress ~ and have not been taken into consideration in the Eyring theory. 

Brownian Particle Motion. The strain of the suspension leads to a change in the con- 
figuration of the particles relative to their equilibrium position [3]. The diffusion pro- 
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cesses in turn seek to cause this configuration to become uniform. The "diffusion stresses" 
which arise in this case increase the dissipation of the mechanical energy of the flow, 
as a consequence of which the effective viscosity of the suspension increases. Such pheno- 
mena were initially analyzed in [3] for exceedingly dilute systems. In the following we 
will examine moderately concentrated suspensions. 

We will once again calculate the effective viscosity with formulas (2) and (3). To 
determine ~* we will formulate the problem dealing with the streamlining of the test parti- 
cle in a uniform medium, where the properties of the medium coincide with the effective 
properties of the suspension (we will not take into consideration the nonhydrodynamic inter- 
action of the particles, and therefore qf = 0). This problem is analogous to (4); hovever, 
the diffusion effects must be taken into consideration here. 

As was demonstrated in [3], the Brownian diffusion flow is equal to the one which arises 
in the suspension in which Brownian motion is absent, but where each particle is actec on 
by a thermodynamic force ft' equal to 

ft=--~-i D VP, 
p (6) 

and here 8-1 is the coefficient of hydrodynamic particle mobility under restricted conditions, 
with D representing the coefficient of particle diffusion. The force ft is balanced [.y 
the force of interphase interaction fh=~--1(V--Vl), where vl once again represents the velocity 
of the particle. Therefore 

~-~(v - v i )  ~_~ D - -  -- vp= o. (7) 
P 

Within the scope of the approximation for the self-consistent field we will assume 
that near the test sphere all of the remaining particles are acted on by the forces f~ and 
IX, and these are of the same form as f and lh, with the average values of p,v , and vl re- 
placed by the corresponding quantities p+,v+ , and v~ near the test particle. We wil] then 
write 

P+ = P + P ' ,  (8) 
where p' is an addition to the equilibrium concentration due to the convective motion of 
the suspension near the test sphere. This function can be determined from the condition 
of particle flow continuity j+ =p+v~ near the test particle. The solution for the equation 
div j + = 0 coincides with the equation for the convective diffusion near the test sph~re. 
In the following we will examine only the very slow flows in which the Peclet number re, 
equal to Iv--vilaD-i and [Le[[a2D -~ (lleH i.e., the norm of the tensor e) is considerably smaller 
than unity. In this case, in terms of order of magnitude, p'/p - Pe < i. 

In linear approximation of Pe the equation for the balance of forces acting on the 
particle near the test sphere is written as follows: 

- -  ~-~ 2-O VP' + ~-~ (v+ - -  v~) = 0. (9)  
P 

The thermodynamic force acting on the particle per unit volume of the mixture is written 
in the form of the pressure gradient VP~, which we will refer to as Brownian 

= - = - --9-o v p ' ,  - 3 ( i o )  

p 4uag p' 
where n is the numerical concentration of the particle. 

Because of the impermeability of the particles the radial velocity Vlr + is equal to 
zero when r = 2a, i.e., when the nearest spheres are in contact with each other. Acccrding 
to Newton's third law, the particles which are brought to a stop near the test sphere act 
on that sphere with a force -nit+ = VpB+. The second of the boundary conditions in (~) 
must therefore now be rewritten as follows: 

o + n - -  + p+) 1 = Z'n,  

and in integral (3) in the place of p+ we have to write the sum p+ + pB +. 

(ii) 
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We note immediately that in the layer a < r < 2 a the dispersion phase executes no rad- 
ial motion, and pB + is therefore constant for a < r < 2a. 

We determine the concentration p' from the linearized equation of diffusion and from 
the condition Vzr + = 0 for r = 2a , which in combination with (9) yields 

A p ' = O ,  r>2a;  D Op' ~ v ~ = O ,  r = 2 a .  (12) 
p Or 

To determine p+, pB +, ~ we again specify the tensor e and solve (4) in a manner analo- 
gous to the way this was done earlier (it should be remembered that now nf = 0). Having de- 
termined the velocity v +, from the first three equations in (4), from (12) we find p', af- 
ter which we calculate pB + from (I0), with pB + corresponding to pi when r = 2a. After the 
calculations, from (2), (3), we arrive at an equation for the effective viscosity, namely: 

5 _ 9p2 
' l=~lo+-~Pqq-40~ " (13) 

We will now find the mobility ~ of the particles. This quantity is defined as a propor- 
tionality factor between the relative velocity of the particle and the suspension v--vi and 
that force acting on the particle. Taking into consideration the Brownian pressure pB + af- 
ter application of standard concepts [5] we obtain 

p-* (v - -  v,)  = ~ [ ( 6 + - -  p+ - -  p+)  cos 0 - -  o ~  sin o] dr, ( 1 4 )  
r ~  

where the integration is conducted over the surface of the test sphere and 8 represents the 
angle between the direction of the vector v--vl and the radius vector directed from out of 
the center of sphere to some point on its surface. 

To determine 13 we will specify the vector vDvl in (4) and assume that e = 0. Subse- 
quent to the calculations we obtain the following equation for 8: 

8 
~-~---- 6 ~ a  q- -~- ~ap~-'. (15) 

Having combined (13) and ( 1 5 ) ,  we o b t a i n  

~0 1 - -  1,2p 
= 1 - - 2 , 5 9 +  1,3502(I - -  1,2p)-1 ' ~ -- 6 ~ a  (16) 

Wi th in  t h e  scope  o f  t h i s  same s e l f - c o n s i s t a n c y  model ,  bu t  w i t h o u t  c o n s i d e r a t i o n  o f  t h e  
Brownian motion, it was found in [8] that 

~o , ~ =  1 
= I -- 2,5p 6~a (17) 

If we compare (16) and (17), we see that the Brownian diffusion elevates the effective 
viscosity of the suspension and reduces particle mobility. For suspensions that are weakly 
concentrated (p << I) the correction factor 6p, introduced through Brownian motion into the 
effective viscosity ~ and determined by comparison of (16) and (17), is equal to 8~ : 1.35p 2, 
which is in rather good agreement with the analogous correction factor found in [3] and 
equals to 0.97p 2. The difference in our results for p << i from the rigorous formula in [3] 
is explained by the fact that in the selected version of the self-consistancy model the cor- 
relations in the positions of the particles in the formulation of (4) are neglected. It is 
the intention of the authors to undertake a more exact calculation in the future to make pro- 
vision for these correlations. 

Velocity Fluctuations. The fluctuations in the concentration of the dispersed phase in- 
troduce additional perturbations into the flow of the suspension, which leads to an increase 
in its effective viscosity. Apparently, the influence of such processes on the rheological 
properties of suspensions was initially analyzed in [9]. However, only small fluctuations 
were dealt with in [9], these arising in neutral syspensions or in colloids whose state was 
considerably distant from the critical point of transition between sol and gel. 

It is a well-known fact that on approach to the critical point the fluctuations in con- 
centration and the radius of their correlations increase. 
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We note from the experiment described in [i0, ii] that the viscosity of the molecular 
solution near the critical point of condensation for a dissolved substance increases marked- 
ly. It has been demonstrated experimentally in [12] that near the critical point of strati- 
fication in a magnetic fluid the coefficient of sound attenuation increases anomalously, 
which can be explained by the substantial increase in the viscosity of the ferrocolloid. 
The physical mechanism responsible for the unique features of the critical behavior in the 
viscosity of solutions and colloids must be identical and associated with the great fluctua- 
tions in the concentration of dissolved molecules or impurity particles. We will subsequent- 
ly examine the state of the colloid near the critical point of stratification, assumilg that 
the correlation radius R between the positions of the particles is very large. 

Analysis of the situation arising here will be conducted by the scaling method [ 13]. 
We will divide the volume occupied by the suspension into cubic blocks of ~ such that in 
each block numerous particles are contained, but ~ << R. Then we will combine these blocks 
into others, with sides L, and ~ << L << R. We will use appropriate subscripts to de lote 
the average quantities referred to the blocks ~ and L, and we will write 

~ = ~z (8p3 ez, a L = ~L (6p,) e L, ( 18 ) 

6p~-- P s - - P e  , i = I ,  L, 
Pe 

w h e r e  Oc i s  t h e  c r i t i c a l  c o n c e n t r a t i o n  o f  t h e  d i s p e r s e d  phase , ,  

I n  a c c o r d a n c e  w i t h  t h e  t h e o r y  o f  s i m i l a r i t y  [13]  we w i l l  a s s u m e  t h a t  ez and  6p~ ~re  l i n -  
e a r  f u n c t i o n s  o f  eL and  6OL, r e s p e c t i v e l y ,  i . e . :  

el = ;~x e .  8p~ = ~'Y~PL' ( 19 ) 

where X = Q/L, while x and y are quantities as yet unknown. 

Within the framework of equilibrium similarity theory [13] we will assume that the ther- 
modynamic potential of the system, an additive quantity, assumes an identical value, regard- 
less of the dimensions of the blocks on the basis of which it was calculated. Analogous con- 
siderations allow us to state that the dissipative function of the system determined ,r 
blocks ~ and L must be one and the same, i.e. : 

= 1:  (2o) 
l L 

w h i c h  we w i t 1  a d o p t  a s  o u r  h y p o t h e s i s .  

E q u a t i o n  ( 2 0 )  c a n  be  s a t i s f i e d  i f  we a s s u m e  t h a t  

alel  = a l e  c . (21) 

If we substitute (18) into (21) and make use of (19), we obtain 

~IL (SPL) = >~2xrlr (KY6PL)" ( 22 ) 

As R/a § 0% the choice of X becomes arbitrary. Therefore, we will assume that ~ = 
(~L)-I/Y. It then follows from (22) that 

~ , (~L)=(~p ,  ) ~' ~l(1). (23) 

It is clear from physical considerations that if ~PL # 0, the viscosity nL is fL1ite 
and that therefore the value of ~g from (i) is finite. We will now determine the signs of 
the exponents x and y. We will write the correlation function 

I'l (r 0 L < el (rl) e~ (0) >.  ( 2 4 )  

U s i n g  t h e  c o n c e p t s  o f  s i m i l a r i t y  o n c e  a g a i n ,  we a s s u m e  t h a t  Fg i s  f u n c t i o n a l l y  &~.pend- 
e n t  on rl, j u s t  a s  t h e  c o r r e l a t o r  F L = < er.(rr.)er.(O) > d e p e n d s  on rL, i f  r l=~rr . .  I t  f o l l o w s  
from the definition of F~ and PL, as well as from (19) that 

r ,  (rL) ~ ~-2xrl  @rl)" ( 25 ) 
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Fig. 2. Schematic diagram representing the 
behavior of effective colloid viscosity with 
an increase in the volume particle concentra- 
tion. 

If we set ~ = LrL -l, we then obtain 

rL(~) = r2xL-2xrz(~)" (26) 

It follows from the principle of correlation attenuation that as rL + = the correlator 
r L + 0 so that x < O. Using the Ornshtein-Tsernik theory, we can demonstrate that y = -1/2. 
Denoting x/y ffi m > 0 and equating L with the dimension of the region occupied by the suspen- 
sion, from (3) we obtain 

~(Sp)~(Sp) --~, SO-- P - - ~  { 1. (27) 

Figure 2 schematically illustrates the behavior of ~, constructed according to (27) and 
from the results of [9]. Curves of analogous form have been obtained in the experiments of 
[10-12], which confirms our conclusion regarding the divergence of the effective viscosity 
of the colloid at the critical point of structure formation. However, additional research 
is necessary to refine the nature of this divergence. 

NOTATION 

a--particle radius; e--average shear strain rate tensor;l-- second-rank unit tensor; 
unit vector of normal two-particle surface; p, pressure; r-- radius vector directed from 

the center of the particle; v-- average velocity of suspension; p, volume concentration of 
dispersed phase; q0, q, viscosity of dispersion fluid and effective viscosity of suspension; 

-- average stress within the mixture. 
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